蛋白芯片详细

Luminex液相芯片 > 定制luminex液相芯片

定制luminex液相芯片

       
        Luminex液相芯片
是在Luminex公司授权的xMAP技术基础上发展起来的基于微孔板的多重检测抗体芯片技术。Luminex的xMAP技术是将高度特异的捕获单克隆抗体偶联到不同荧光标记的磁珠上,将不同种类磁珠混合后悬浮于96孔微孔板中。进一步,加入生物素标记的高亲和配对二抗结合SA-PE进行信号放大,以实现对多种微量细胞因子的有效检测。 利用梯度稀释的标准品检测信号构建标准曲线,实现大量目标样本中多因子的同时检测和准确定量。  


        上海华盈生物医药科技有限公司通过整合多个Luminex公司授权液相悬浮芯片平台,推出目前生物研究领域通量最高的Luminex液相芯片检测列表。其中Human检测指标多达521个,Mouse检测指标多达210个,Rat检测指标多达111个,研究人员可以根据检测列表任意选择组合感兴趣的指标订制luminex液相芯片。同时,华盈生物还提供近130种Luminex液相芯片成品,覆盖Cytokine、Chemokine、Angiogenesis、Growth Factor、MMPs & TIMPs、Cardiovascular Disease、Metabolic Disorder、Kidney Injury、Neurological Disorder、Bone Metabolism、Sepsis等多种功能和类型的蛋白质。华盈生物Luminex液相芯片平台致力于为广大研究人员提供最为个性化的芯片产品,提供从芯片订制到实验、数据分析等多环节全方位的技术支持和服务。

液相芯片特点:

         

  1. 每种抗体设置50次技术重复;

  2. 可批量检测80个样本中的多重因子;

  3. 可根据研究要求定制个性化检测芯片;

  4. 双抗夹心&荧光检测法有效检测微量指标,下限达pg/mL;

  5. 50μL的液质样本、200μg的总蛋白量即可完成多指标检测;

  6. 适用于血清/浆、培养上清及细胞、组织裂解液等多种生物样本;

  7. 可以有效避免采用传统方法所引入的批次间实验误差;

  8. 可最大限度扩大单个样本的信息量并可做不同分析物间的交互分析。


液相芯片原理:

 



Luminex液相芯片定制:

                

                     ◇ Human 521 因子Luminex液相芯片定制列表                                  点击下载列表
                     ◇ Mouse 210 因子Luminex液相芯片定制列表                                   点击下载列表
                     ◇ Rat 111 因子Luminex液相芯片定制列表                                         点击下载列表
                     ◇ Canine 38 因子Luminex液相芯片定制列表                                     点击下载列表
                     ◇ Feline 28 因子Luminex液相芯片定制列表                                       点击下载列表
                     ◇ Porcine 13 因子Luminex液相芯片定制列表                                    点击下载列表
                     ◇ Non-Human Primate 46 因子Luminex液相芯片定制列表              点击下载列表   

   

液相芯片文献:


  1. Zhu X, Zhang K, He W, et al. Proinflammatory status in the aqueous humor of high myopic cataract eyes. Exp Eye Res, 2016, 142: 13-18.  (复旦大学附属眼耳鼻喉医院

  2. Wei Y, Liu B, Sun J, et al. Regulation of Th17/Treg function contributes to the attenuation of chronic airway inflammation by icariin in ovalbumin-induced murine asthma model. Immunobiology, 2015. (上海华山医院

  3. Liu Q, et al. Targeting the surface protein SasX by active and passive vaccination to reduce Staphylococcus aureus colonization and infection. Infect Immun, 2015: IAI. 02951-14. (上海交通大学医学院

  4. Liu Y H, et al. Omega-3 Fatty Acid Intervention Suppresses Lipopolysaccharide-Induced Inflammation and Weight Loss in Mice. Mar Drugs, 2015, 13(2): 1026-1036. (北京301医院

  5. Fan M, Zhang J, Wang Z, et al. Phosphorylated VEGFR2 and hypertension: potential biomarkers to indicate VEGF-dependency of advanced breast cancer in anti-angiogenic therapy. Breast Cancer Res Tr, 2014, 143(1): 141-151.  (复旦大学

  6. Ye S, Li Z L, Luo D, et al. Tumor-derived exosomes promote tumor progression and T-cell dysfunction through the regulation of enriched exosomal microRNAs in human nasopharyngeal carcinoma. Oncotarget, 2014, 5(14): 5439.  (中山大学癌症研究中心

  7. Xu C,Ju X,Song D, et al. An association analysis between psychophysicalcharacteristics and genome-wide gene expression changes in human adaptation to the extreme climate at the Antarctic Dome Argus. Mol Psychiatr, 2014. (北京医科院

  8. Chen X, Gan Y, Li W, et al. The interaction between mesenchymal stem cells and steroids during inflammation. Cell Death Dis, 2014, 5(1): e1009.  (上海交通大学

  9. Ye S, et al. Tumor-derived exosomes promote tumor progression and T-cell dysfunction through the regulation of enriched exosomal microRNAs in human nasopharyngeal carcinoma. Oncotarget, 2014, 5(14): 5439. (中山大学

  10. Xie Y, et al. Effect of Intestinal Microbiota Alteration on Hepatic Damage in Rats with Acute Rejection After Liver Transplantation. Microbial Ecol , 2014, 68(4): 871-880. (浙江大学医学院

  11. Liu B, et al. Severe influenza A (H1N1) pdm09 infection induces thymic atrophy through activating innate CD8+ CD44hi T cells by upregulating IFN-γ. Cell Death Dis, 2014, 5(10): e1440. (首都医科大学

  12. Gao R, et al. Cytokine and chemokine profiles in lung tissues from fatal cases of 2009 pandemic influenza A (H1N1): role of the host immune response in pathogenesis. Am J Pathol , 2013, 183(4): 1258-1268. (中国疾控中心

  13. You S, et al. Inhibitory effects and molecular mechanisms of garlic organosulfur compounds on the production of inflammatory mediators. Mol Nutr Food Res , 2013, 57(11): 2049-2060.

  14. Zhao J, et al. Spinal interleukin-33 and its receptor ST2 contribute to bone cancer-induced pain in mice.Neuroscience, 2013, 253: 172-182. (湖南农业大学

  15. Wakao H, Yoshikiyo K, Koshimizu U, et al. Expansion of functional human mucosal-associated invariant T cells via reprogramming to pluripotency and redifferentiation. Cell Stem Cell, 2013, 12(5): 546-558.

  16. Zhao J, Zhang H, Liu S B, et al. Spinal interleukin-33 and its receptor ST2 contribute to bone cancer-induced pain in mice. Neuroscience, 2013, 253: 172-182. (复旦医学院

  17. You S, Nakanishi E, Kuwata H, et al. Inhibitory effects and molecular mechanisms of garlic organosulfur compounds on the production of inflammatory mediators. Mol Nutr Food Res, 2013, 57(11): 2049-2060. (湖南农业大学

  18. Li C, Yang P, Sun Y, et al. IL-17 response mediates acute lung injury induced by the 2009 pandemic influenza A (H1N1) virus. Cell Res, 2012, 22(3): 528-538. (北京协和医学院

  19. Zhang X, Zhang Y, Tao B, et al. Loss of Shp2 in alveoli epithelia induces deregulated surfactant homeostasis, resulting in spontaneous pulmonary fibrosis. FASEB J, 2012, 26(6): 2338-2350.  (浙大医学院