蛋白芯片详细

信号通路磷酸化抗体芯片 > p53信号通路磷酸化抗体芯片(PFT196)

p53信号通路磷酸化抗体芯片(PFT196)

      p53是迄今生物研究领域最为著名的抑癌分子和转录因子,对大量关键基因的表达水平发挥着调控作用。p53在DNA损伤、氧化应激、癌基因高表达等因素的刺激下会被激活,从而引起细胞G1/S期过渡停滞、细胞衰老和凋亡加速,三大细胞生命现象的发生。研究表明,大约50%的人类癌症组织中,p53都处于低表达状态。重调肿瘤组织中的p53活性成为目前抗肿瘤药物开发的热点方向。


       p53 信号通路磷酸化抗体芯片(PFT196),采用三维高分子膜专利技术,在抗体芯片片基上共价结合196种高特异抗体,并运用特有的荧光标记技术进行样本标记,以实现对p53经典信号通路的高覆盖检测。抗体芯片提供信号蛋白多个关键磷酸化位点的同步检测,针对每一个特定蛋白磷酸化位点,抗体芯片设置一对抗体分别检测其磷酸化(Phospho)和非磷酸化(non-Phospho)状态。同时,该抗体芯片芯片可检测多种已有文献报道的非p53经典通路的信号蛋白,极大扩展p53单一信号通路研究的延伸性。


抗体芯片特点:


1. 芯片规格为76 x 25 x 1 mm;                

2. 实现单一信号通路全面筛选;                 

3. 每种抗体设置6次技术重复;                 

4. 适用于组织、细胞等多类型样本;                

5. 5x106细胞、200μg总蛋白量即可满足实验;              

6. 每个检测位点设有磷酸化和非磷酸化配对抗体;                

7. 可通用于人、小鼠、大鼠等多类型模式生物检测。                


抗体芯片原理:

 



抗体芯片文献:            



   动态箭头.gif详细列表下载


           

抗体芯片文献:  

1.      Liu D, et al. C/EBPβ enhances platinum resistance of ovarian cancer cells by reprogramming H3K79 methylation. Nat Commun. 2018, 9(1): 1739. (华中科技大学同济医院)
2.      Lei miao 
Yin, et al. 
Transgelin-2 as a therapeutic target for asthmatic pulmonary resistanceSci Transl Med,2018, 10(427).(上海中医药大学)
3.      Venkatesh, Humsa S., et al. Targeting neuronal activity-regulated neuroligin-3 dependency in high-grade glioma.Nature, 2017, 549(7673): 533-537. 
4.      Gao Y, et al. Mammalian elongation factor 4 regulates mitochondrial translation essential for spermatogenesis.Natstruct Mol Biol, 2016, 23(5): 441-449. (中国科学院生物物理研究所)

5.     Jiang HL et al. SSRP1 uppresses TGF-β-Driven Epithelial-to-Mesenchymal Transition and Metastasis in Triple-Negative Breast Cancer by Regulating Mitochondrial Retrograde Signaling, Cancer Res, 2016, 76(4): 952-64.(复旦大学附属肿瘤医院)

6.      Kuang XY et al. The phosphorylation-specific association of STMN1 with GRP78 promotes breast cancer metastasis, Cancer Lett, 2016, 377(1): 87-96.复旦大学附属肿瘤医院)

7.      Chen Y, et al. The hepatitis B virus X protein promotes pancreatic cancer through modulation of the PI3K/AKT signaling pathwayCancer Lett, 2016, 380(1): 98-105. (浙大第二附属医院)

8.       Zhu Y et al. Long non-coding RNA LOC572558 inhibits bladder cancer cell proliferation and tumor growth by regulating the AKT-MDM2-p53 signaling axisCancer Lett, 2016, 04(3).(复旦大学附属肿瘤医院)

9.        Luo L L, Zhao L, Wang Y X, et al. Insulin-like growth factor binding protein-3 is a new predictor of radiosensitivity on esophageal squamous cell carcinoma. Sci Rep-UK, 2015, 5: 17336.  (中山大学附属肿瘤医院)

10.       Zhu Y P, Wan F N, Shen Y J, et al.  Reactive stroma component COL6A1 is upregulated in castration-resistant prostate cancer and promotes tumor growth. Oncotarget, 2015, 6(16): 14488.(复旦大学附属肿瘤医院)
11.      Wang T, Han S, Wu Z, et al.  XCR1 promotes cell growth and migration and is correlated with bone metastasis in non-small cell lung cancer. Biochem Bioph Res Co, 2015, 464(2): 635-641. (上海长征医院)

12.      Chen P, Huang H, Wu J, et al. Bone marrow stromal cells protect acute myeloid leukemia cells from anti‐CD44 therapy partly through regulating PI3K/Akt-p27(Kip1) axis. Mol Carcinogen, 2015, 54(12): 1678-85. (福建医科大学附属协和医院)

13.      Wan F, et al. Oxidized low-density lipoprotein is associated with advanced-stage prostate cancer. Tumor Biol, 2015: 1-10. (复旦大学附属肿瘤医院)

14.      Zhu R, et al. pH sensitive nano layered double hydroxides reduce the hematotoxicity and enhance the anticancer efficacy of etoposide on non-small cell lung cancer.Acta Biomater, 2016, 29: 320-32.  (同济大学)

15.      Li W, et al.  Withaferin A suppresses the up-regulation of acetyl-coA carboxylase 1 and skin tumor formation in a skin carcinogenesis mouse model. Mol Carcinog, 2015, 55(11): 1739-1746. (河北大学)

16.      Rao W, et al. OVA66 increases cell growth, invasion and survival via regulation of IGF-1R-MAPK signaling in human cancer cells. Carcinogenesis,2014, 35(7): 1573-1581.(上海交通大学医学院)

17.      Jia D, et al. Amplification of MPZL1/PZR promotes tumor cell migration through Src-mediated phosphorylation of cortactin in hepatocellular carcinoma. Cell Res, 2014, (24): 204-217. (上海仁济医院) 

18.      Xu N et al. Activation of RAW264.7 mouse macrophage cells in vitro through treatment with recombinant ricin toxin-binding subunit B: Involvement of protein tyrosine, NF-kB and JAK-STAT kinase signaling pathways. Int J Mol Med, 2013, 32(3): 729-735.(吉林大学)

19.      Li F et al. Superoxide Mediates Direct Current Electric Field-Induced Directional Migration of Glioma Cells through the Activation of AKT and ERK. PLoS ONE. 2013, 8(4): e61195.(第三军医大学)

20.      Ranzato E et al. Epithelial mesenchymal transition traits in honey-driven keratinocyte wound healing: comparison among different honeys. Wound Repair Regen. 2012, 20(5): 778-785.

21.       Zhang YM et al. A novel angiogenesis inhibitor impairs lovo cell survival via targeting against human VEGFR and its signaling pathway of phosphorylation. Cell Death Dis, 2012, 3: e406.(西安交通大学)